Search results for "Least squares support vector machine"

showing 8 items of 8 documents

Multi-phase classification by a least-squares support vector machine approach in tomography images of geological samples

2016

Abstract. Image processing of X-ray-computed polychromatic cone-beam micro-tomography (μXCT) data of geological samples mainly involves artefact reduction and phase segmentation. For the former, the main beam-hardening (BH) artefact is removed by applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. A Matlab code for this approach is provided in the Appendix. The final BH-corrected image is extracted from the residual data or from the difference between the surface elevation values and the original grey-scale values. For the segmentation, we propose a novel least-squar…

010504 meteorology & atmospheric sciencesComputer scienceStratigraphySoil ScienceImage processing010502 geochemistry & geophysicsResidual01 natural sciences550 Earth scienceslcsh:StratigraphyGeochemistry and PetrologyLeast squares support vector machineSegmentationlcsh:QE640-6990105 earth and related environmental sciencesEarth-Surface ProcessesPixelbusiness.industrylcsh:QE1-996.5PaleontologyGeologyPattern recognition550 Geowissenschaftenlcsh:GeologyData setSupport vector machineGeophysicsData pointArtificial intelligencebusinessSolid Earth
researchProduct

Adjusted bat algorithm for tuning of support vector machine parameters

2016

Support vector machines are powerful and often used technique of supervised learning applied to classification. Quality of the constructed classifier can be improved by appropriate selection of the learning parameters. These parameters are often tuned using grid search with relatively large step. This optimization process can be done computationally more efficiently and more precisely using stochastic search metaheuristics. In this paper we propose adjusted bat algorithm for support vector machines parameter optimization and show that compared to the grid search it leads to a better classifier. We tested our approach on standard set of benchmark data sets from UCI machine learning repositor…

0209 industrial biotechnologyWake-sleep algorithmActive learning (machine learning)Computer scienceStability (learning theory)Linear classifier02 engineering and technologySemi-supervised learningcomputer.software_genreCross-validationRelevance vector machineKernel (linear algebra)020901 industrial engineering & automationLeast squares support vector machine0202 electrical engineering electronic engineering information engineeringMetaheuristicBat algorithmStructured support vector machinebusiness.industrySupervised learningOnline machine learningParticle swarm optimizationPattern recognitionPerceptronGeneralization errorSupport vector machineKernel methodComputational learning theoryMargin classifierHyperparameter optimization020201 artificial intelligence & image processingData miningArtificial intelligenceHyper-heuristicbusinesscomputer2016 IEEE Congress on Evolutionary Computation (CEC)
researchProduct

Processing of rock core microtomography images: Using seven different machine learning algorithms

2016

The abilities of machine learning algorithms to process X-ray microtomographic rock images were determined. The study focused on the use of unsupervised, supervised, and ensemble clustering techniques, to segment X-ray computer microtomography rock images and to estimate the pore spaces and pore size diameters in the rocks. The unsupervised k-means technique gave the fastest processing time and the supervised least squares support vector machine technique gave the slowest processing time. Multiphase assemblages of solid phases (minerals and finely grained minerals) and the pore phase were found on visual inspection of the images. In general, the accuracy in terms of porosity values and pore…

Boosting (machine learning)010504 meteorology & atmospheric sciencesComputer performanceComputer sciencebusiness.industryFeature vectorPattern recognition010502 geochemistry & geophysics01 natural sciencesFuzzy logicSupport vector machineComputingMethodologies_PATTERNRECOGNITIONLeast squares support vector machineArtificial intelligenceComputers in Earth SciencesCluster analysisPorositybusiness0105 earth and related environmental sciencesInformation SystemsComputers & Geosciences
researchProduct

Semisupervised nonlinear feature extraction for image classification

2012

Feature extraction is of paramount importance for an accurate classification of remote sensing images. Techniques based on data transformations are widely used in this context. However, linear feature extraction algorithms, such as the principal component analysis and partial least squares, can address this problem in a suboptimal way because the data relations are often nonlinear. Kernel methods may alleviate this problem only when the structure of the data manifold is properly captured. However, this is difficult to achieve when small-size training sets are available. In these cases, exploiting the information contained in unlabeled samples together with the available training data can si…

Graph kernelComputer scienceFeature extractioncomputer.software_genreKernel principal component analysisk-nearest neighbors algorithmKernel (linear algebra)Polynomial kernelPartial least squares regressionLeast squares support vector machineCluster analysisTraining setContextual image classificationbusiness.industryDimensionality reductionPattern recognitionManifoldKernel methodKernel embedding of distributionsKernel (statistics)Principal component analysisRadial basis function kernelPrincipal component regressionData miningArtificial intelligencebusinesscomputer2012 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Quantification and classification of high-resolution magic angle spinning data for brain tumor diagnosis.

2007

The goal of this work is to propose a complete protocol (preprocessing, processing and classification) for classifying brain tumors with proton high-resolution magic-angle spinning ((1)H HR-MAS) data. The different steps of the procedure are detailed and discussed. Feature extraction techniques such as peak integration, including also the automated quantitation method AQSES, were combined with linear (LDA) and non-linear (least-squares support vector machine or LS-SVM) classifiers. Classification accuracy was assessed using a stratified random sampling scheme. The results suggest that LS-SVM performs better than LDA while AQSES performs better than the standard peak integration feature extr…

Magnetic Resonance SpectroscopyProtonComputer scienceFeature extractionBrain tumorHigh resolutionSensitivity and SpecificityLeast squares support vector machineBiomarkers TumorMagic angle spinningmedicineHumansDiagnosis Computer-AssistedSpinningBrain Neoplasmsbusiness.industryMagic (programming)Reproducibility of ResultsPattern recognitionNuclear magnetic resonance spectroscopymedicine.diseaseSupport vector machineComputingMethodologies_PATTERNRECOGNITIONSpin LabelsArtificial intelligenceProtonsbusinessAlgorithms
researchProduct

Kernelizing LSPE(λ)

2007

We propose the use of kernel-based methods as underlying function approximator in the least-squares based policy evaluation framework of LSPE(λ) and LSTD(λ). In particular we present the 'kernelization' of model-free LSPE(λ). The 'kernelization' is computationally made possible by using the subset of regressors approximation, which approximates the kernel using a vastly reduced number of basis functions. The core of our proposed solution is an efficient recursive implementation with automatic supervised selection of the relevant basis functions. The LSPE method is well-suited for optimistic policy iteration and can thus be used in the context of online reinforcement learning. We use the hig…

Mathematical optimizationKernel (statistics)KernelizationLeast squares support vector machineBenchmark (computing)Reinforcement learningContext (language use)Basis functionFunction (mathematics)Mathematics2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning
researchProduct

TOWARD A SOLUTION OF ALLOCATION IN LIFE CYCLE INVENTORIES: THE USE OF LEAST SQUARES TECHNIQUES

2010

Purpose: The matrix method for the solution of the so-called inventory problem in LCA generally determines the inventory vector related to a specific system of processes by solving a system of linear equations. The paper proposes a new approach to deal with systems characterized by a rectangular (and thus non-invertible) coefficients matrix. The approach, based on the application of regression techniques, allows solving the system without using computational expedients such as the allocation procedure. Methods: The regression techniques used in the paper are (besides the ordinary least squares, OLS) total least squares (TLS) and data least squares (DLS). In this paper, the authors present t…

Mathematical optimizationSettore ING-IND/11 - Fisica Tecnica AmbientaleMulti-functional processLCAAllocationGeneralized least squares/dk/atira/pure/sustainabledevelopmentgoals/responsible_consumption_and_productionLeast squaresOverdetermined systemLeast squaresOrthogonal regressionOver-determined systemDiscrepancy vectorNon-linear least squaresOrdinary least squaresLeast squares support vector machineTotal least squaresSDG 12 - Responsible Consumption and ProductionLinear least squaresGeneral Environmental ScienceMathematics
researchProduct

Fuzzy sigmoid kernel for support vector classifiers

2004

This Letter proposes the use of the fuzzy sigmoid function presented in (IEEE Trans. Neural Networks 14(6) (2003) 1576) as non-positive semi-definite kernel in the support vector machines framework. The fuzzy sigmoid kernel allows lower computational cost, and higher rate of positive eigenvalues of the kernel matrix, which alleviates current limitations of the sigmoid kernel.

business.industryCognitive NeurosciencePattern recognitionSigmoid functionFuzzy logicComputer Science ApplicationsSupport vector machineKernel methodArtificial IntelligencePolynomial kernelKernel embedding of distributionsRadial basis function kernelLeast squares support vector machineArtificial intelligencebusinessMathematicsNeurocomputing
researchProduct